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Abstract: This paper study of clustering algorithm for trajectories elements which is based on dense of the grouping 

element. Our experiments give new method for partitioning the TRACLUS algorithm and provide the Euclidean 

distance of moving element. We provide a new approach of moving elements. This approach develops a cluster of 

trajectory object and calculates the actual distance of moving object. This algorithm works on the CLSTR algorithm and 

calculates the actual cell value. This paper assumes the entropy of moving object and heuristic parameter.    
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1. INTRODUCTION 

We are facing an unprecedented proliferation of mobile devices, many equipped with positional technologies such as 

GPS. These devices produce a huge amount of trajectory data which is described as geometry changes overtime 

continuously. Since a large amount of trajectories can be accumulated for a short period of time, many applications 

need to summarize the data or extract valuable knowledge from it. As a part of the trend, discovery of trajectory 

patterns has been paid great attention due to many applications.  

 

For the pattern discovery of spatiotemporal data, many techniques in the literature have partitioned data space into 

disjoint cells (e.g., fixed grid) [1,2,3,4]. The reasons are mainly two-folded. First, space-decomposition techniques 

bring efficiency of discovery process. Obviously, dealing with symbols identifying each cell is much simpler than 

handling real coordinates which should have bigger data size and give lower intuitions for data processing. Second, 

spatiotemporal data has a distinct characteristic from general data for mining studies (e.g., basket data). Assume Paul 

arrives at his work at 9 a.m. every weekday. Though his work is an identical place in semantic, the location may not be 

expressed by spatially the exact same coordinates because of the different vacancy of parking lots every day. Therefore, 

pattern discovery methods need to regard slightly different locations as the same.  

 

Despite the popularity of the space-partitioning approaches, it has two critical shortcomings. First, it cannot solve the 

anwer loss problem [5]. Suppose problem finding dense regions in Figure 1. Data space is divided into nine cells from 

A to I and four objects (o1, o2, o3, and, o4) have moved in the space for two timestamps. If we define a dense region as 

a cell having more than two hitting points, r1 cannot be a dense region though there are three close points since the 

points spread over three cells. Second, space-partitioning approaches have granularity problems. The precision of 

pattern discovery highly depends on how big or small the space divided. Especially, when there are many noises of 

movements (e.g., Paul unusually makes a trip to a far away for a few days), discovery process should manage a large 

size of data space, and thus the accuracy can decrease for efficient computation. For instance, r2 and r3 are distinct 

dense regions; however, both should be expressed by only one cell E due to the rough granularity. 

 

In order to overcome those problems, this study introduces a novel approach that takes both advantages of space-

partitioning schemes and data-centric methods. Specifically, we reveal frequent regions that an object frequently visits 

by applying periodic data mining techniques [6] based on the data-centric approach. It is unaffected by space 

partitioning problems, hence, it should be more precise. However, it does not have the space-partitioning efficiency. 

For efficient data handling, we introduce trajectory pattern model (TPM) that explains the relationships between the 

regions and partitioned cells using hidden Markov models (HMMs). An HMM is a doubly embedded stochastic process 

with an underlying stochastic process that is not observable. We model partitioned cells to observable states and 

discovered frequent regions to hidden states. Therefore, the TPM let applications be able to deal with symbols of the 

cells (instead of using real coordinates) for effectiveness but have more precise discovery results than existing space-

partition methods. Building a TPM from historical trajectories can be useful for many applications. First, it computes 

the probability of a given observation sequence. It implies the TPM can explain how the current movements (a 

sequence of cell symbols) of an object are similar to its common movement patterns (a sequence of frequent regions). 

Second, given a cell symbol sequence, it can also compute the most likely sequence of frequent regions. Moreover, the 
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model can be trained by newly added data. Hence, it can reflect not only historical movements of an object but also its 

current motion trends.  

 

 

 

 

 

 

 

 

 

Figure 1: Deficiencies of space-partitioning approaches 

II.   RELATED WORK  

Clustering has been extensively studied in the data mining area. Clustering algorithms can be classified into four 

categories: partitioning methods (e.g., k-means [17]), hierarchical methods (e.g., BIRCH [24]), density-based methods 

(e.g., DBSCAN [6] and OPTICS [2]), and grid-based methods (e.g., STING [22]). Our algorithm TRACLUS falls in 

the category of density-based methods. In density-based methods, clusters are regions of high density separated by 

regions of low density. DBSCAN has been regarded as the most representative density-based clustering algorithm, and 

OPTICS has been devised to reduce the burden of determining parameter values in DBSCAN. The majority of previous 

research has been focused on clustering of point data. The most similar work to ours is the trajectory clustering 

algorithm proposed by Gaffney et al.[7, 8]. It is based on probabilistic modeling of a set of trajectories. Formally, the 

probability density function of observed trajectories is a mixture density: P(yj|xj,θ) = 𝑘
𝑘 fk(yj|xj,θk)wk, wherefk(yj|xj,θk) 

is the density component, wk is the weight, and θk is the set of parameters for k-th component. Here, θk and wk can be 

estimated from the trajectory data using the Expectation-Maximization (EM) algorithm. The estimated density 

components fk(yj|xj,θk) are then interpreted as clusters. The fundamental difference of this algorithm from TRACLUS is 

being based on probabilistic clustering and clustering trajectories as a whole.  

Distance measures for searching similar trajectories have been proposed recently. Vlachos et al. [21] have proposed the 

distance measure LCSS, and Chen et al. [5] the distance measure EDR. Both LCSS and EDR are based on the edit 

distance and are extended so as to be robust to noises, shifts, and different lengths that occur due to sensor failures, 

errors in detection techniques, and different sampling rates. EDR can represent the gap between two similar 

subsequence’s more precisely compared with LCSS [5]. Besides, dynamic time warping has been widely adopted as a 

distance measure for time series [12]. These distance measures, however, are not adequate for our problem since they 

are originally designed to compare the whole trajectory (especially, the whole time-series sequence). In other words, 

the distance could be large although some portions of trajectories are very similar. Hence, it is hard to detect only 

similar portions of trajectories. The MDL principle has been successfully used for diverse applications, such as graph 

partitioning [3] and distance function design for strings [13]. For graph partitioning, a graph is represented as a binary 

matrix, and then, the matrix is divided into disjoint row and column groups such that the rectangular intersections of 

groups are homogeneous. Here, the MDL principle is used to automatically select the number of row and column 

groups [3]. For distance function design, data compression is used to measure the similarity between two strings. This 

idea is tightly connected with the MDL principle [13]. 

III.   PROPOSED ALGORITHM 

A.   The CLSTR Algorithm 
 

The trajectory clustering algorithm TRCLS consist of three phases. Its executes three algorithms to perform the subtasks 

(lines 2, 4 and 6), in the first phase we execute the trajectory partitioning algorithm and then second phase we execute 

the trajectory clustering algorithm. We detailed explain these algorithms in Section A and B. 
 

Algorithm CLSTR (Clustering Trajectory) 

-------------------------------------------------- 
 

Input:      A set of trajectories T = {J1,···,Jnumtra} 

Output: (1) A set of clusters R = {S1,···,Snumnclr} 

 (2) A set of representative trajectories 
 

Algorithm: 
 

         /* Partitioning Phase */ 
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01:    for each (J ∈ T ) do  

02: Execute Approximate Trajectory Partitioning; 

    Gets a set Ls of line segments using the result; 

03:    Accumulate Ls into a set E; 

         /* Grouping Phase */ 

04:             Execute Line Segment Clustering for E;  

    Get a set of R clusters as the result; 

05:             for each ( S∈ R  ) do;  

06:             Execute Representative Trajectory Generation;  

     Get a representative trajectory as the result; 

  

B.   Partitioning Trajectory (Partitioning Phase) 
 

In this section, we propose a Approximate Trajectory Partitioning algorithm for trajectory clustering. The algorithm 

Approximate Trajectory Partitioning shows below. We compute MDLpar and MDLnopar for each point in a trajectory 

(lines 5∼6). If  MDLpar is greater than MDLnopar, we insert the immediately previous point pcurrIndex−1 into the set CPi 

of characteristic points (line 8). Then, we repeat the same procedure from that point (line 9). Otherwise, we increase the 

length of a candidate trajectory partition (line 11) 

 

Algorithm Approximate Trajectory Partitioning 

--------------------------------------------------------- 

Input: A trajectory TRi = p1p2p3···pj ···pleni   

Output: A set CPi of characteristic points 
 

Algorithm: 

01:  Add p1 into the set CPi; /* the starting point */  

02:  startIndex := 1, length := 1;  

03:  while (startIndex + length ≤ leni) do 

04:   currIndex := startIndex + length;  

05:   costpar := MDLpar(pstartIndex, pcurrIndex);  

06:   costnopar := MDLnopar(pstartIndex, pcurrIndex);  

/* check if partitioning at the current point makes the MDL cost larger than not partitioning */  

07:  if (costpar> costnopar) then 

/* partition at the previous point */  

08:    Add pcurrIndex − 1 into the set CPi; 

09:    startIndex := currIndex−1, length := 1;  

10:   else  

11:   ength := length + 1;  

12: Add pleni into the set CPi;    /* the ending point */ 

 

C.   Clustering Trajectory (Grouping Phase) 
 

In this section, we propose a line segment clustering algorithm for trajectory clustering and Representative Trajectory 

Generation algorithm in the grouping phase. We now present our density-based clustering algorithm for line segments. 

Given a set D of line segments, our algorithm generates a set O of clusters. It requires two parameters ε and MLins. We 

define a cluster as a density-connected set. Our algorithm shares many characteristics with the algorithm DBSCAN. 

Unlike DBSCAN, however, not all density-connected sets can become clusters. We need to consider the 

number of trajectories from which line segments have been extracted. This number of trajectories is typically smaller 

than that of line segments. For example, in the extreme, all the line segments in a density-connected set could be those 

extracted from one trajectory. We prevent such clusters since they do not explain the behavior of a sufficient number of 

trajectories. 
 

Algorithm: Line Segment Clustering  

--------------------------------------------------- 
Input:  (1) A set of line segments D = {L1,···,Lnumln

},  

  (2) Two parameters ε and MLins 

Output: A set of clusters S = {C1,···,Cnumclus
} 

Algorithm: 

/* 1 Step */ 
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01:  Set cluster Id to be 0; /* an initial id */ 

02:  Mark all the line segments in D as a unclassified; 

03:  for each (L ∈  D) do 

04:        if (L is unclassified) then 

05:              Compute Nε (L); 

06:              if (|Nε (L)| ≥ MLins) then 

07:                     Assign cluster Id to ∀ X ∈  Nε(L); 

08:                     Insert Nε(L) − {L} into the queue Q; 

/* 2 Step */ 

09:                     ExpandCluster(Q, cluster Id, ε , MLins); 

10:                     Increase cluster Id by 1; /* a new id */ 

11:              else 

12:                     Mark Lasnoise; 

/* 3 Step */ 

13:  Allocate ∀ L ∈ D to its cluster Ccluster Id; 

/* check the trajectory cardinality */ 

14:  for each (C∈ S) do 

/* a threshold other than MLins can be used */ 

15:        if(| PTR (C) | < MLins) then 

16:              Remove C fromthe set S of clusters; 

/* 4 Step: compute a density – connected set */ 

17:   ExpandCluster(Q, clusterId , ε , MLins) { 

18:        while (Q=∅) do 

19:              Let M  be the first line segment in Q; 

20:              Compute Nε (M); 

21:              if (|Nε(M)| ≥ MLins) then 

22:                     for each (X ∈ Nε(M) ) do 

23:                           if (X is unclassified or noise) then 

24:                                 Assign cluster Id to X; 

25:                           if (X is unclassified) then 

26:                                 Insert X into the queue Q; 

27:              Remove M from the queue Q; 

28: } 

 

Algorithm: Representative Trajectory Generation 

--------------------------------------------------------------- 
Input:  (1) A cluster Ci of line segments,  

 (2) MLins  (3) A smoothing parameter α  

Output: A representative trajectory RT Ri for Ci 

Algorithm:  

01:   Compute the average direction vector 𝑣  ;  

02:   Rotate the axes so that the X axis is parallel to 𝑣 ; 

03:   Let P be the set of the starting and ending points of the line segments in Ci;  

 /* X´-value denotes the coordinate of the X´ axis */  

04:   Sort the points in the set P by their X´-values;  

05:      for each (p ∈ P) do  

/* count nump using a sweep line (or plane) */  

06:     Let nump be the number of the line segments that contain the X´- value of the point p; 

07:      if (nump ≥ MLins) then  
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08:      diff := the difference in X´- values between p and its immediately previous point;  

09:      if (diff  ≥ α) then  

10:    Compute the average coordinate avgˊp;  

11:     Undo the rotation and get the point avgp;  

12:     Append avgp to the end of RTRi; 

 

D.   Experimental Evaluation 
 

Results & Analysis of Saffir-Simpson Hurricane Track Data- 

Figure 4 shows the entropy as ε is varied. The minimum is achieved at ε = 43. Here, avg|Nε(L)| is 7.26. According to 

our heuristic, we try parameter values around ε = 43 and MLins= 10∼12. Using visual inspection and domain 

knowledge, we are able to obtain the optimal parameter values: ε = 42 and MLins = 11. We note that the optimal value 

ε = 42 is very close to the estimated value ε = 43. Figure 2 shows the quality measure as ε and MLins are varied. The 

smaller KMeasure is, the better the clustering quality is. There is a little discrepancy between the actual clustering 

quality and our measure. Visual inspection results show that the best clustering is achieved at MLins = 11, not at MLins 

= 10. Nevertheless, our measure is shown to be a good indicator of the actual clustering quality within the same MLins 

value. That is, if we consider only the result for MLins = 11, we can see that our measure becomes nearly minimal 

when the optimal value of ε is used. We know that some hurricanes move along a curve, changing their direction from 

east-to-west to south-to-north, and then to west to-east. On the other hand, some hurricanes move along a straight east-

to-west line or a straight west-to-east line. The lower horizontal cluster represents the east-to-west movements, the 

upper horizontal one the west-to-east movements, and the vertical ones the south-to-north movements. 
 

 
   Figure 2: Quality measure for the hurricane data                      Figure 3: Quality measure for the Blue Bull 2002 data 
   

 
       Figure 4: Entropy for hurricane data               Figure 5: Entropy for Blue Bull 2002 data 
 

Results & Analysis of Animal Movement Data- 

Blue Bull’s Movements in 2002: 
Figure 5 shows the entropy as ε is varied. The minimum is achieved at ε = 37. Here, avg|Nε(L)| is 9.52. Visually, we 

obtain the optimal parameter values: ε = 39 and MLins = 13. Again, the optimal value ε = 37 is very close to the 

estimated value ε = 37.  
 

Figure 20 shows the quality measure as ε and MLins are varied. We observe that our measure becomes nearly minimal 

when the optimal parameter values are used. The correlation between the actual clustering quality and our measure, 

KMeasure, is shown to be stronger in Figure 3 than in Figure 2.  

Black Buck’s Movements in 2002:  
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Our experiment shows the clustering result using the optimal parameter values (ε = 41 and MLins = 13). The result 

indicates that two clusters are discovered in the two densest regions. This result is exactly what we expect. The centre 

region is not so dense to be identifies as a cluster. Due to space limit, we omit the detailed figures for the entropy and 

quality measure. 

 

V.   CONCLUSION  

In this paper, we have proposed a novel framework, the partition-and-group framework, for clustering trajectories. 

Based on this framework, we have developed the trajectory clustering algorithm CLSTR. As the algorithm progresses, a 

trajectory is partitioned into a set of line segments at characteristic points, and then, similar line segments in a dense 

region are grouped into a cluster. The main advantage of CLSTR is the discovery of common sub-trajectories from a 

trajectory database. To show the effectiveness of CLSTR, we have performed extensive experiments using two real data 

sets: Saffir-Simpson hurricane track data and animal movement’s data. Our heuristic for parameter value selection has 

been shown to estimate the optimal parameter values quite accurately. We have implemented a visual inspection tool 

for cluster validation. The visual inspection results have demonstrated that CLSTR effectively identifies common sub-

trajectories as clusters. Overall, we believe that we have provided a new paradigm in trajectory clustering. Data 

analysts are able to get a new insight into trajectory data by virtue of the common sub trajectories. This work is just the 

first step, and there are many challenging issues discussed above. We are currently investigating into detailed issues as 

a further study. 
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